

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use LEVETIRACETAM IN SODIUM CHLORIDE INJECTION safely and effectively. See full prescribing information for LEVETIRACETAM IN SODIUM CHLORIDE INJECTION.

LEVETIRACETAM IN SODIUM CHLORIDE injection, for intravenous use
Initial U.S. Approval: 1999

RECENT MAJOR CHANGES

Warnings and Precautions (5.5)

3/2024

INDICATIONS AND USAGE

Levetiracetam in Sodium Chloride Injection is indicated for adjunct therapy in adults (≥ 16 years of age) with the following seizure types when oral administration is temporarily not feasible:

- Partial-onset seizures (1.1)
- Myoclonic seizures in patients with juvenile myoclonic epilepsy (1.2)
- Primary generalized tonic-clonic seizures (1.3)

DOSAGE AND ADMINISTRATION

- For intravenous infusion only (2.1)
- Do not dilute prior to use (2.1)
- Administer dose-specific bag intravenously over 15-minutes (2.1)

Initial Exposure to Levetiracetam

- **Partial-Onset Seizures:** Initial dose is 500 mg twice daily. Increase by 500 mg twice daily every 2 weeks to a maximum recommended dose of 1500 mg twice daily (2.2).
- **Myoclonic Seizures in Patients with Juvenile Myoclonic Epilepsy:** Initial dose is 500 mg twice daily. Increase by 500 mg twice daily every 2 weeks to the recommended dose of 1500 mg twice daily (2.2).
- **Primary Generalized Tonic-Clonic Seizures:** Initial dose is 500 mg twice daily. Increase by 500 mg twice daily every 2 weeks to the recommended dose of 1500 mg twice daily (2.2).

Switching from or to oral Levetiracetam: The total daily dosage/frequency of levetiracetam injection should be equivalent to those of oral levetiracetam (2.3, 2.4).

Renal Impairment: Dose adjustment necessary based on creatinine clearance (2.5).

FULL PRESCRIBING INFORMATION: CONTENTS***1 INDICATIONS AND USAGE****1.1 Partial-Onset Seizures****1.2 Myoclonic Seizures in Patients with Juvenile Myoclonic Epilepsy****1.3 Primary Generalized Tonic-Clonic Seizures****1.4 Limitations of Use****2 DOSAGE AND ADMINISTRATION****2.1 General Information - Administration****2.2 Initial Exposure to Levetiracetam****2.3 Switching to Intravenous Dosing****2.4 Switching to Oral Dosing****2.5 Adult Patients with Impaired Renal Function****2.7 Discontinuation of Levetiracetam****3 DOSAGE FORMS AND STRENGTHS****4 CONTRAINDICATIONS****5 WARNINGS AND PRECAUTIONS****5.1 Psychiatric Reactions****5.2 Somnolence and Fatigue****5.3 Anaphylaxis and Angioedema****5.4 Serious Dermatological Reactions****5.5 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multorgan Hypersensitivity****5.6 Coordination Difficulties****5.7 Hematology Abnormalities****5.8 Seizure Control During Pregnancy****6 ADVERSE REACTIONS****6.1 Clinical Trials Experience****DOSAGE FORMS AND STRENGTHS**

- Levetiracetam in 0.82% sodium chloride (500 mg/100 mL) (5 mg/mL) (3)
- Levetiracetam in 0.75% sodium chloride (1000 mg/100 mL) (10 mg/mL) (3)
- Levetiracetam in 0.54% sodium chloride (1500 mg/100 mL) (15 mg/mL) (3)

CONTRAINDICATIONS

- Known hypersensitivity to levetiracetam; angioedema and anaphylaxis have occurred (4)

WARNINGS AND PRECAUTIONS

- **Psychiatric Reactions:** Behavioral abnormalities including psychotic symptoms, suicidal ideation, irritability, and aggressive behavior have been observed. Monitor patients for psychiatric signs and symptoms (5.1)
- **Somnolence and Fatigue:** Monitor patients for these symptoms and advise patients not to drive or operate machinery until they have gained sufficient experience on levetiracetam (5.2)
- **Serious Dermatological Reactions:** Discontinue Levetiracetam at the first sign of rash unless clearly not drug related (5.4)
- **Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multorgan Hypersensitivity:** Discontinue if no alternative etiology (5.5)
- **Coordination Difficulties:** Monitor for ataxia, abnormal gait, and incoordination (5.6)
- **Withdrawal Seizures:** Levetiracetam must be gradually withdrawn (5.7)

ADVERSE REACTIONS

- Most common adverse reactions (incidence in levetiracetam-treated patients is $\geq 5\%$ more than in placebo-treated patients) include: somnolence, asthenia, infection, and dizziness (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Caplin Steriles Limited at 1-866-978-6111 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS

- **Pregnancy:** Plasma levels of levetiracetam may be decreased; monitor closely during pregnancy. Based on animal data, may cause fetal harm. (5.9, 8.1)

See 17 for PATIENT COUNSELING INFORMATION.

Revised: 10/2024

*Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION: CONTENTS***1 INDICATIONS AND USAGE****1.1 Partial-Onset Seizures****1.2 Myoclonic Seizures in Patients with Juvenile Myoclonic Epilepsy****1.3 Primary Generalized Tonic-Clonic Seizures****1.4 Limitations of Use****2 DOSAGE AND ADMINISTRATION****2.1 General Information - Administration****2.2 Initial Exposure to Levetiracetam****2.3 Switching to Intravenous Dosing****2.4 Switching to Oral Dosing****2.5 Adult Patients with Impaired Renal Function****2.7 Discontinuation of Levetiracetam****3 DOSAGE FORMS AND STRENGTHS****4 CONTRAINDICATIONS****5 WARNINGS AND PRECAUTIONS****5.1 Psychiatric Reactions****5.2 Somnolence and Fatigue****5.3 Anaphylaxis and Angioedema****5.4 Serious Dermatological Reactions****5.5 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multorgan Hypersensitivity****5.6 Coordination Difficulties****5.7 Hematology Abnormalities****5.8 Seizure Control During Pregnancy****6 ADVERSE REACTIONS****6.1 Clinical Trials Experience****8 USE IN SPECIFIC POPULATIONS****8.1 Pregnancy****8.2 Lactation****8.4 Pediatric Use****8.5 Geriatric Use****8.6 Renal Impairment****10 OVERDOSAGE**

- 10.1 Signs, Symptoms and Laboratory Findings of Acute Overdosage in Humans
- 10.2 Management of Overdose
- 10.3 Hemodialysis

11 DESCRIPTION**12 CLINICAL PHARMACOLOGY****12.1 Mechanism of Action****12.2 Pharmacodynamics****12.3 Pharmacokinetics****13 NONCLINICAL TOXICOLOGY****13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility****14 CLINICAL STUDIES****14.1 Partial-Onset Seizures****14.2 Myoclonic Seizures in Patients with Juvenile Myoclonic Epilepsy****14.3 Primary Generalized Tonic-Clonic Seizures****16 HOW SUPPLIED/STORAGE AND HANDLING****16.1 How Supplied****16.2 Storage****17 PATIENT COUNSELING INFORMATION**

*Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION**1 INDICATIONS AND USAGE****1.1 Partial-Onset Seizures****1.2 Myoclonic Seizures in Patients with Juvenile Myoclonic Epilepsy****1.3 Primary Generalized Tonic-Clonic Seizures****1.4 Limitations of Use****2 DOSAGE AND ADMINISTRATION****2.1 General Information - Administration****2.2 Initial Exposure to Levetiracetam****2.3 Switching to Intravenous Dosing****2.4 Switching to Oral Dosing****2.5 Adult Patients with Impaired Renal Function****2.7 Discontinuation of Levetiracetam****3 DOSAGE FORMS AND STRENGTHS****4 CONTRAINDICATIONS****5 WARNINGS AND PRECAUTIONS****5.1 Psychiatric Reactions****5.2 Somnolence and Fatigue****5.3 Anaphylaxis and Angioedema****5.4 Serious Dermatological Reactions****5.5 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multorgan Hypersensitivity****5.6 Coordination Difficulties****5.7 Hematology Abnormalities****5.8 Seizure Control During Pregnancy****6 ADVERSE REACTIONS****6.1 Clinical Trials Experience****Partial-Onset Seizures**

In controlled clinical studies using levetiracetam tablets in adults with partial-onset seizures (see Clinical Studies (14.1)), the most common adverse reactions in adult patients receiving levetiracetam in combination with other AEDs, for events with rates greater than placebo, were somnolence, asthenia, infection and dizziness.

Of the most common adverse reactions in adults experiencing partial-onset seizures, asthenia, somnolence and dizziness occurred predominantly during the first 4 weeks of treatment with levetiracetam.

Table 2 lists adverse reactions that occurred in at least 1% of adult epilepsy patients receiving levetiracetam tablets in placebo-controlled studies and were numerically more common than in patients treated with placebo. In these studies, either levetiracetam or placebo was added to concurrent AED therapy. Adverse reactions were usually mild to moderate in intensity.

Table 2: Adverse Reactions* in Placebo-Controlled, Adjunctive Studies in Adults Experiencing Partial-Onset Seizures

Adverse Reaction	Levetiracetam (N=769) %	Placebo (N=439) %
Asthenia	15	9
Somnolence	15	8
Headache	14	13
Infection	13	8
Dizziness	9	4
Pain	7	6
Pharyngitis	6	4
Depression	4	2
Nervousness	4	2
Rhinitis	4	3
Anorexia	3	2
Ataxia	3	1
Vertigo	3	1
Amnesia	2	1
Anxiety	2	1
Cough Increased	2	1

8.2 Lactation

Risk Summary

Levetiracetam is excreted in human milk. There are no data on the effects of levetiracetam on the breastfed infant, or the effects on milk production.

The development and health benefits of breastfeeding should be considered along with the mother's clinical need for levetiracetam and any potential adverse effects on the breastfed infant from levetiracetam or from the underlying maternal condition.

8.4 Pediatric Use

Safety and effectiveness of levetiracetam injection in patients below the age of 16 years have not been established.

8.5 Geriatric Use

There were 347 subjects in clinical studies of levetiracetam that were 65 years old and over. No overall differences in safety were observed between these subjects and younger subjects. There were insufficient numbers of elderly subjects in controlled trials of epilepsy to adequately assess the effectiveness of levetiracetam in these patients.

Levetiracetam is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function [see Clinical Pharmacology (12.3)].

8.6 Renal Impairment

Clearance of levetiracetam is decreased in patients with renal impairment and is correlated with creatinine clearance [see Clinical Pharmacology (12.3)]. Dosage adjustment is recommended for patients with impaired renal function and supplemental doses should be given to patients after dialysis [see Dosage and Administration (2.5)].

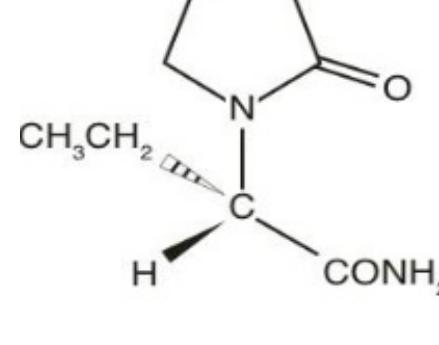
10 OVERDOSAGE

10.1 Signs, Symptoms and Laboratory Findings of Acute Overdose in Humans

The highest known dose of oral levetiracetam received in the clinical development program was 6000 mg/day. Other than drowsiness, there were no adverse reactions in the few known cases of overdose in clinical trials. Cases of somnolence, agitation, aggression, depressed level of consciousness, respiratory depression and coma were observed with levetiracetam overdoses in postmarketing use.

10.2 Management of Overdose

There is no specific antidote for overdose with levetiracetam. If indicated, elimination of unabsorbed drug should be attempted by emesis or gastric lavage; usual precautions should be observed to maintain airway. General supportive care of the patient is indicated including monitoring of vital signs and observation of the patient's clinical status. A Certified Poison Control Center should be contacted for up to date information on the management of overdose with levetiracetam.


10.3 Hemodialysis

Standard hemodialysis procedures result in significant clearance of levetiracetam (approximately 50% in 4 hours) and should be considered in cases of overdose. Although hemodialysis has not been performed in the few known cases of overdose, it may be indicated by the patient's clinical state or in patients with significant renal impairment.

11 DESCRIPTION

Levetiracetam in Sodium Chloride Injection is a clear, colorless, sterile solution for intravenous administration.

The chemical name of levetiracetam, a single enantiomer, is (−)-S-ethyl-2-oxo-1-pyrrolidine acetamide, its molecular formula is $C_6H_{11}N_2O_2$ and its molecular weight is 170.21. Levetiracetam is chemically unrelated to existing antiepileptic drugs (AEDs). It has the following structural formula:

Levetiracetam, USP is a white to off-white crystalline powder with a faint odor and a bitter taste. It is very soluble in water (104.0 g/100 mL). It is freely soluble in chloroform (65.3 g/100 mL) and in methanol (53.6 g/100 mL), soluble in ethanol (16.5 g/100 mL), sparingly soluble in acetonitrile (5.7 g/100 mL) and practically insoluble in n-hexane. (Solubility limits are expressed as g/100 mL solvent.)

Levetiracetam in Sodium Chloride Injection is a clear, colorless, sterile solution that is available in a single-dose dual port bag with an aluminum over wrap. The container closure is not made with natural rubber latex.

500 mg/100 mL: One 100 mL bag contains 500 mg of levetiracetam, USP (5 mg/mL), water for injection, 820 mg sodium chloride, 5.5 mg of glacial acetic acid and buffered at approximately pH 5.5 with glacial acetic acid and 164 mg sodium acetate trihydrate.

1000 mg/100 mL: One 100 mL bag contains 1000 mg of levetiracetam, USP (10 mg/mL), water for injection, 750 mg sodium chloride, 6.5 mg of glacial acetic acid and buffered at approximately pH 5.5 with glacial acetic acid and 164 mg sodium acetate trihydrate.

1500 mg/100 mL: One 100 mL bag contains 1500 mg of levetiracetam, USP (15 mg/mL), water for injection, 540 mg sodium chloride, 7.5 mg of glacial acetic acid and buffered at approximately pH 5.5 with glacial acetic acid and 164 mg sodium acetate trihydrate.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

The precise mechanism by which levetiracetam exerts its antiepileptic effect is unknown.

A saturable and stereoselective neuronal binding site in rat brain tissue has been described for levetiracetam. Experimental data indicate that this binding site is the synaptic vesicle protein SV2A, thought to be involved in the regulation of vesicle exocytosis. Although the molecular significance of levetiracetam binding to synaptic vesicle protein SV2A is not understood, levetiracetam and related analogs showed a rank order of affinity for SV2A which correlated with the potency of their antiseizure activity in audiogenic seizure-prone mice. These findings suggest that the interaction of levetiracetam with the SV2A protein may contribute to the antiepileptic mechanism of action of the drug.

12.2 Pharmacodynamics

Effects on QTc Interval

The effect of levetiracetam on QTc prolongation was evaluated in a randomized, double-blind, positive-controlled (oxcarbazepine 400 mg) and placebo-controlled crossover study of levetiracetam (1000 mg or 5000 mg) in 52 healthy subjects. The upper bound of the 90% confidence interval for the largest placebo-adjusted, baseline-corrected QTc was below 10 milliseconds. Therefore, there was no evidence of significant QTc prolongation in this study.

12.3 Pharmacokinetics

Equivalent doses of intravenous (IV) levetiracetam and oral levetiracetam result in equivalent C_{max} , C_{ave} , and total systemic exposure to levetiracetam when the IV levetiracetam is administered as a 15 minute infusion.

Overview

Levetiracetam is rapidly and almost completely absorbed after oral administration. Levetiracetam injection and tablets are bioequivalent. The pharmacokinetics of levetiracetam are linear and time-proportional over the subject's dose range. Levetiracetam is protein-bound (<10% bound) and its volume of distribution is close to the volume of intracellular and extracellular water. Sixty-six percent (66%) of the dose is renally excreted unchanged. The major metabolic pathway of levetiracetam (24% of dose) is an enzymatic hydrolysis of the acetamide group. It is not liver cytochrome P450 dependent. The metabolites have no known pharmacological activity and are renally excreted. Plasma half-life of levetiracetam across studies is approximately 6–8 hours. It is increased in the elderly primarily due to impaired renal clearance and in subjects with renal impairment.

Distribution

The equivalence of levetiracetam injection and the oral formulation was demonstrated in a bioavailability study of 17 healthy volunteers. In this study, levetiracetam 1500 mg was diluted in 100 mL 0.9% sterile saline solution and was infused over 15 minutes. The selected infusion rate provided plasma concentrations of levetiracetam at the end of the infusion period similar to those achieved at T_{max} after an equivalent oral dose. It is demonstrated that levetiracetam 1500 mg intravenous infusion is equivalent to levetiracetam 3 x 500 mg oral tablets. The time dependent pharmacokinetic profile of levetiracetam was demonstrated following 1500 mg intravenous infusion for 4 days with BID dosing. The AUC_{0-24h} at steady-state was equivalent to AUC_{0-24h} following an equivalent single dose.

Levetiracetam and its major metabolite are less than 10% bound to plasma proteins; clinically significant interactions with other drugs through competition for protein binding sites are therefore unlikely.

Metabolism

Levetiracetam is not extensively metabolized in humans. The major metabolic pathway is the enzymatic hydrolysis of the acetamide group, which produces the carboxylic acid metabolite, ucb L057 (24% of dose) and is not dependent on any liver cytochrome P450 isoenzymes. The major metabolite is inactive in animal seizure models. Two minor metabolites were identified as the product of hydroxylation of the 2-oxo-pyrrolidine ring (2% of dose) and opening of the 2-oxo-pyrrolidine ring in position 1 (1% of dose). There is no enantiomeric interconversion of levetiracetam or its major metabolite.

Elimination

Levetiracetam plasma half-life in adults is 7 ± 1 hour and is unaffected by either dose, route of administration or repeated administration. Levetiracetam is eliminated from the systemic circulation by renal excretion as unchanged drug which represents 66% of administered dose. The total body clearance of levetiracetam is 0.98 mL/min/kg and the renal clearance is 0.6 mL/min/kg. The mechanism of excretion is glomerular filtration with subsequent partial tubular reabsorption. The metabolite ucb L057 is excreted by glomerular filtration and active tubular secretion with a renal clearance of 4 mL/min/kg. Levetiracetam elimination is correlated to creatinine clearance. Levetiracetam clearance is reduced in patients with renal impairment [see Dosage and Administration (2.5) and Use in Specific Populations (8.6)].

Specific Populations

Elderly

Pharmacokinetics of levetiracetam were evaluated in 16 elderly subjects (age 61–88 years) with creatinine clearance ranging from 30 to 74 mL/min. Following oral administration of twice-daily dosing for 10 days, total body clearance decreased by 38% and the half-life was 2.5 hours longer in the elderly compared to healthy adults. This is most likely due to the decrease in renal function in these subjects.

Pregnancy

Levetiracetam levels may decrease during pregnancy [see Warnings and Precautions (5.9) and Use in Specific Populations (8.1)].

Gender

Levetiracetam C_{max} and AUC were 20% higher in women (N=11) compared to men (N=12). However, clearances adjusted for body weight were comparable.

Race

Formal pharmacokinetic studies of the effects of race have not been conducted. Cross study comparisons involving Caucasians (N=12) and Asians (N=12), however, show that pharmacokinetics of levetiracetam were comparable between the two races. Because levetiracetam is primarily renally excreted and there are no important racial differences in creatinine clearance, pharmacokinetic differences due to race are not expected.

Renal Impairment

The disposition of levetiracetam was studied in adult subjects with varying degrees of renal function. Total body clearance of levetiracetam is reduced in patients with impaired renal function by 40% in the mild group (CLcr = 50–80 mL/min), 50% in the moderate group (CLcr = 30–50 mL/min) and 60% in the severe renal impairment group (CLcr < 30 mL/min). Clearance of levetiracetam is correlated with creatinine clearance.

In aneute (end stage renal disease) patients, the total body clearance decreased 70% compared to normal subjects (CLcr >80 mL/min). Approximately 50% of the pool of levetiracetam in the body is removed during a standard 4 hour hemodialysis procedure [see Dosage and Administration (2.5)].

Hepatic Impairment

In subjects with mild (Child-Pugh A) to moderate (Child-Pugh B) hepatic impairment, the pharmacokinetics of levetiracetam were unchanged. In patients with severe hepatic impairment (Child-Pugh C), total body clearance was 50% of that of normal subjects, but decreased renal clearance accounted for most of the decrease. No dose adjustment is needed for patients with hepatic impairment.

Drug Interactions

In vitro data on metabolic interactions indicate that levetiracetam is unlikely to produce, or be subject to, pharmacokinetic interactions. Levetiracetam and its major metabolite, at concentrations well above C_{max} achieved within the therapeutic dose range, are neither inhibitors of nor high affinity substrates for human liver cytochrome P450 isozymes, epoxide hydrolase or UDP-glucuronidation enzymes.

Potential pharmacokinetic interactions of levetiracetam with other AEDs (carbamazepine, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone and valproate) and through pharmacokinetic screening in the placebo-controlled clinical studies in epilepsy patients.

Phenyltoin

Levetiracetam (3000 mg daily) had no effect on the pharmacokinetic disposition of phenyltoin in patients with refractory epilepsy. Pharmacokinetics of levetiracetam were also not affected by phenyltoin.

Valproate

Levetiracetam (1500 mg twice daily) did not alter the pharmacokinetics of valproate in healthy volunteers. Valproate 500 mg twice daily did not modify the rate or extent of levetiracetam absorption or its plasma clearance or urinary excretion. There was also no effect on exposure to and the excretion of the primary metabolite, ucb L057.

Other Antiepileptic Drugs

Potential drug interactions between levetiracetam and other AEDs (carbamazepine, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone and valproate) were also assessed by evaluating the serum concentrations of levetiracetam and these AEDs during placebo-controlled clinical studies. These data indicate that levetiracetam does not influence the plasma concentration of other AEDs and that these AEDs do not influence the pharmacokinetics of levetiracetam.

Oral Contraceptives

Levetiracetam (500 mg twice daily) did not influence the pharmacokinetics of an oral contraceptive containing 0.03 mg ethinodiol and 0.15 mg levonorgestrel, or of the levonorgestrel hormone and progestrone levels, indicating that impairment of contraceptive efficacy is unlikely. Coadministration of this oral contraceptive did not influence the pharmacokinetics of levetiracetam.

Digoxin

Levetiracetam (1000 mg twice daily) did not influence the pharmacokinetics and pharmacodynamics (ECG) of digoxin given as a 0.25 mg dose every day. Coadministration of digoxin did not influence the pharmacokinetics of levetiracetam.

Warfarin

Levetiracetam (1000 mg twice daily) did not influence the pharmacokinetics of R and S warfarin. Prothrombin time was not affected by levetiracetam. Coadministration of warfarin did not affect the pharmacokinetics of levetiracetam.

Probenecid

Probenecid, a renal tubular secretion blocking agent, administered at a dose of 200 mg four times a day, did not change the pharmacokinetics of levetiracetam 1000 mg twice daily. C_{max} of the metabolite, ucb L057, was approximately doubled in the presence of probenecid while the fraction of drug excreted unchanged in the urine remained the same. Renal clearance of ucb L057 in the presence of probenecid decreased 60%, probably related to competitive inhibition of tubular secretion of ucb L057. The effect of levetiracetam on probenecid was not studied.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Rats were dosed with levetiracetam in the diet for 104 weeks at doses of 50, 300 and 1800 mg/kg/day. Plasma exposure (AUC) at the highest dose was approximately 6 times that in humans at the maximum recommended human dose (MRHD) of 3000 mg. There was no evidence of carcinogenicity. In mice, oral administration of levetiracetam for 80 weeks (doses up to 960 mg/kg/day) or 2 years (doses up to 4000 mg/kg/day, lower to 3000 mg/kg/day after 45 weeks due to intolerance) was not associated with an increase in tumors. The highest dose tested in mice for 2 years (3000 mg/kg/day) is approximately 5 times the MRHD on a body surface area (mg/m²) basis.

Mutagenesis

Levetiracetam was negative in *in vitro* (Ames, chromosomal aberration in mammalian cells) and *in vivo* (mouse lymphoma) assays. The major human metabolite of levetiracetam (ucb L057) was negative in *in vitro* (Ames, mouse lymphoma) assays.

Impairment of Fertility

No adverse effects on male or female fertility or reproductive performance were observed in rats at oral doses up to 1800 mg/kg/day, which were associated with plasma exposures (AUC) up to approximately 6 times that in humans at the MRHD.

14 CLINICAL STUDIES

All clinical studies supporting the efficacy of levetiracetam utilized oral formulations. The finding of efficacy of levetiracetam injection is based on the results of studies using an oral formulation of levetiracetam, and clinical and pharmacokinetic data from the oral formulation are used to support the use of the injection.

14.1 Partial-Onset Seizures

The effectiveness of levetiracetam as adjunctive therapy (added to other antiepileptic drugs) in adults was established in three multicenter, randomized, double-blind, placebo-controlled clinical studies in patients who had refractory partial-onset seizures with or without secondary generalization. The tablet formulation was used in all these studies. In these studies, 304 patients were randomized to placebo, 1000 mg, 2000 mg, or 3000 mg/day. Patients enrolled in Study 1 or Study 2 had refractory partial-onset seizures for at least 2 years and had taken two or more classic AEDs. Patients enrolled in Study 3 had refractory partial-onset seizures for at least 1 year and had taken one classical AED. At the time of the study, patients were taking a stable dose regimen of at least one and could take a maximum of two AEDs. During the baseline period, patients had to have experienced at least two partial-onset seizures during each 4-week period.

Study 1

Study 1 was a double-blind, placebo-controlled, parallel-group study conducted at 41 sites in the United States comparing levetiracetam 1000 mg/day (N=97), levetiracetam 3000 mg/day (N=101), and placebo (N=95) given in equally divided doses twice daily. After a prospective baseline period of 12 weeks, patients were randomized to one of the three treatment groups described above. The 18-week treatment period consisted of a 6-week titration period, followed by a 12-week fixed dose evaluation period, during which concomitant AED regimens were held constant. The primary measure of effectiveness was a between group comparison of the percent reduction in weekly partial seizure frequency relative to placebo over the